Poker Combinations Math
The discussion is mostly mathematical, using the Poker hands to illustrate counting techniques and calculation of probabilities Working with poker hands is an excellent way to illustrate the counting techniques covered previously in this blog – multiplication principle, permutation and combination (also covered here). 5-CARD POKER HANDS (most recent edit: January 2, 2005) A SINGLE PAIR This the hand with the pattern AABCD, where A, B, C and D are from the distinct 'kinds' of cards. Combinations in Mathematics. Now let’s visit our second definition of the term combinations. Mathematics: A selection of items from a collection where order doesn’t matter. So far, we have seen ways of calculating hole card combinations. This second definition will help us calculate the probability of various board runouts. Most poker games are based on 5-card poker hands so the ranking of these hands is crucial. There can be some interesting situations arising when the game involves choosing 5 cards from 6 or more cards, but in this case we are counting 5-card hands based on holding only 5 cards. The total number of 5-card poker hands is. Combination Formula. The Combination of 4 objects taken 3 at a time are the same as the number of subgroups of 3 objects taken from 4 objects. Take another example, given three fruits; say an apple, an orange, and a pear, three combinations of two can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
For a great training video on poker combinatorics, check out this poker combos video.
'Combinatorics' is a big word for something that isn’t all that difficult to understand. In this article, I will go through the basics of working out hand combinations or 'combos' in poker and give a few examples to help show you why it is useful.
Oh, and as you’ve probably noticed, 'combinatorics', 'hand combinations' and 'combos' refer to the same thing in poker. Don’t get confused if I use them interchangeably, which I probably will.
What is poker combinatorics?
Poker combinatorics involves working out how many different combinations of a hand exists in a certain situation.
For example:
- How many ways can you be dealt AK?
- How many ways can you be dealt 66?
- How combinations of T9 are there on a flop of T32?
- How many straight draw combinations are there on a flop of AT7?
Using combinatorics, you will be able to quickly work these numbers out and use them to help you make better decisions based on the probability of certain hands showing up.
Poker starting hand combinations basics.
- Any two (e.g. AK or T5) = 16 combinations
- Pairs (e.g. AA or TT) = 6 combinations
If you were take a hand like AK and write down all the possible ways you could be dealt this hand from a deck of cards (e.g. A K, A K, A K etc.), you would find that there are 16 possible combinations.
- See all 16 AK hand combinations:
Similarly, if you wrote down all the possible combinations of a pocket pair like JJ (e.g. JJ, JJ, JJ etc.), you would find that there are just 6 possible combinations.
- See all 6 JJ pocket pair hand combinations:
So as you can see from these basic starting hand combinations in poker, you’re almost 3 times as likely to be dealt a non-paired hand like AK than a paired hand. That’s pretty interesting in itself, but you can do a lot more than this…
Note: two extra starting hand combinations.
As mentioned above, there are 16 combinations of any two non-paired cards. Therefore, this includes the suited and non-suited combinations.
Here are 2 extra stats that give you the total combinations of any two suited and any two unsuited cards specifically.
- Any two (e.g. AK or 67 suited or unsuited) = 16 combinations
- Any two suited (AKs) = 4 combinations
- Any two unsuited (AKo) = 12 combinations
- Pairs (e.g. AA or TT) = 6 combinations
You won’t use these extra starting hand combinations nearly as much as the first two, but I thought I would include them here for your interest anyway.
It’s easy to work out how there are only 4 suited combinations of any two cards, as there are only 4 suits in the deck. If you then take these 4 suited hands away from the total of 16 'any two' hand combinations (which include both the suited and unsuited hands), you are left with the 12 unsuited hand combinations. Easy.
Fact: There are 1,326 combinations of starting hands in Texas Hold’em in total.
Working out hand combinations using 'known' cards.
Let’s say we hold KQ on a flop of KT4 (suits do not matter). How many possible combinations of AK and TT are out there that our opponent could hold?
Unpaired hands (e.g. AK).
How to work out the total number of hand combinations for an unpaired hand like AK, JT, or Q3.
Method: Multiply the numbers of available cards for each of the two cards.
Word equation: (1st card available cards) x (2nd card available cards) = total combinations
Example.
If we hold KQ on a KT4 flop, how many possible combinations of AK are there?
There are 4 Aces and 2 Kings (4 minus the 1 on the flop and minus the 1 in our hand) available in the deck.
C = 8, so there are 8 possible combinations of AK if we hold KQ on a flop of KT4.
Paired hands (e.g. TT).
How to work out the total number of hand combinations for an paired hand like AA, JJ, or 44.
Method: Multiply the number of available cards by the number of available cards minus 1, then divide by two.
Word equation: [(available cards) x (available cards - 1)] / 2 = total combinations
Example.
How many combinations of TT are there on a KT4 flop?
Well, on a flop of KT4 here are 3 Tens left in the deck, so…
C = 3, which means there are 3 possible combinations of TT.
Thoughts on working out hand combinations.
Working out the number of possible combinations of unpaired hands is easy enough; just multiply the two numbers of available cards.
Working out the combinations for paired hands looks awkward at first, but it’s not that tricky when you actually try it out. Just find the number of available cards, take 1 away from that number, multiply those two numbers together then half it.
Note: You’ll also notice that this method works for working out the preflop starting hand combinations mentioned earlier on. For example, if you’re working out the number of AK combinations as a starting hand, there are 4 Aces and 4 Kings available, so 4 x 4 = 16 AK combinations.
Why is combinatorics useful?
Because by working out hand combinations, you can find out more useful information about a player’s range.
For example, let’s say that an opponents 3betting range is roughly 2%. This means that they are only ever 3betting AA, KK and AK. That’s a very tight range indeed.
Now, just looking at this range of hands you might think that whenever this player 3bets, they are more likely to have a big pocket pair. After all, both AA and KK are in his range, compared to the single unpaired hand of AK. So without considering combinatorics for this 2% range, you might think that the probability break-up of each hand looks like this:
- AA = 33%
- KK = 33%
- AK = 33%
…with the two big pairs making up the majority of this 2% 3betting range (roughly 66% in total).
However, let’s look at these hands by comparing the total combinations for each hand:
- AA = 6 combinations (21.5%)
- KK = 6 combinations (21.5%)
- AK = 16 combinations (57%)
So out of 28 possible combinations made up from AA, KK and AK, 16 of them come from AK. This means that when our opponent 3bets, the majority of the time he is holding AK and not a big pocket pair.
Now obviously if you’re holding a hand like 75o this is hardly comforting. However, the point is that it’s useful to realise that the probabilities of certain types of hands in a range will vary. Just because a player either has AA or AK, it doesn’t mean that they’re both equally probable holdings - they will actually be holding AK more often than not.
Analogy: If a fruit bowl contains 100 oranges, 1 apple, 1 pear and 1 grape, there is a decent range of fruit (the 'hands'). However, the the fruits are heavily weighted toward oranges, so there is a greater chance of randomly selecting an orange from the bowl than any of the 3 other possible fruits ('AK' in the example above).
This same method applies when you’re trying to work out the probabilities of a range of possible made hands on the flop by looking at the number of hand combinations. For example, if your opponent could have either a straight draw or a set, which of the two is more likely?
Poker combinatorics example hand.
You have 66 on a board of A J 6 8 2. The pot is $12 and you bet $10. Your opponent moves all in for $60, which means you have to call $50 to win a pot of $82.
You are confident that your opponent either has a set or two pair with an Ace (i.e. AJ, A8, A6 or A2). Don’t worry about how you know this or why you’re in this situation, you just are.
According to pot odds, you need to have at least a 38% chance of having the best hand to call. You can now use combinatorics / hand combinations here to help you decide whether or not to call.
Poker combinatorics example hand solution.
First of all, let’s split our opponent’s hands in to hands you beat and hands you don’t beat, working out the number of hand combinations for each.
Adding them all up…
Seeing as you have the best hand 79% of the time (or 79% 'equity') and the pot odds indicate that you only need to have the best hand 38% of the time, it makes it +EV to call.
So whereas you might have initially thought that the number of hands we beat compared to the number of hands we didn’t beat was close to 50/50 (making it likely -EV to call), after looking at the hand combinations we can see that it is actually much closer to 80/20, making calling a profitable play.
Being able to assign a range to your opponent is good, but understanding the different likelihoods of the hands within that range is better.
Poker combinatorics conclusion.
Working out hand combinations in poker is simple:
- Unpaired hands: Multiply the number of available cards. (e.g. AK on an AT2 flop = [3 x 4] = 12 AK combinations).
- Paired hands: Find the number of available cards. Take 1 away from that number, multiply those two numbers together and divide by 2. (e.g. TT on a AT2 flop = [3 x 2] / 2 = 3 TT combinations).
By working out hand combinations you can gain a much better understanding about opponent’s hand ranges. If you only ever deal in ranges and ignore hand combinations, you are missing out on useful information.
It’s unrealistic to think that you’re going to work out all these hand combinations on the fly whilst you’re sat at the table. However, a lot of value comes from simply familiarising yourself with the varying probabilities of different types of hands for future reference.
For example, after a while you’ll start to realise that straight draws are a lot more common than you think, and that flush draws are far less common than you think. Insights like these will help you when you’re faced with similar decisions in the future.
The next time you’re doing some post session analysis, spend some time thinking about combinatorics and noting down what you find.
Poker combinatorics further reading.
Hand combinations in poker all stem from statistics. So if you’re interested in finding out more about the math side of things, here are a few links that I found helpful:
- Combinations video - Youtube (all the stuff on this channel is awesome)
Poker Combinations Math Cheat
If you’re more interested in finding out more about combinations in poker only, here are a few interesting reads:
Go back to the awesome Texas Hold'em Strategy.
Comments
On This Page
Introduction
Derivations for Five Card Stud
I have been asked so many times how I derived the probabilities of drawing each poker hand that I have created this section to explain the calculation. This assumes some level mathematical proficiency; anyone comfortable with high school math should be able to work through this explanation. The skills used here can be applied to a wide range of probability problems.
The Factorial Function
If you already know about the factorial function you can skip ahead. If you think 5! means to yell the number five then keep reading.
The instructions for your living room couch will probably recommend that you rearrange the cushions on a regular basis. Let's assume your couch has four cushions. How many combinations can you arrange them in? The answer is 4!, or 24. There are obviously 4 positions to put the first cushion, then there will be 3 positions left to put the second, 2 positions for the third, and only 1 for the last one, or 4*3*2*1 = 24. If you had n cushions there would be n*(n-1)*(n-2)* ... * 1 = n! ways to arrange them. Any scientific calculator should have a factorial button, usually denoted as x!, and the fact(x) function in Excel will give the factorial of x. The total number of ways to arrange 52 cards would be 52! = 8.065818 * 1067.
The Combinatorial Function
Assume you want to form a committee of 4 people out of a pool of 10 people in your office. How many different combinations of people are there to choose from? The answer is 10!/(4!*(10-4)!) = 210. The general case is if you have to form a committee of y people out of a pool of x then there are x!/(y!*(x-y)!) combinations to choose from. Why? For the example given there would be 10! = 3,628,800 ways to put the 10 people in your office in order. You could consider the first four as the committee and the other six as the lucky ones. However you don't have to establish an order of the people in the committee or those who aren't in the committee. There are 4! = 24 ways to arrange the people in the committee and 6! = 720 ways to arrange the others. By dividing 10! by the product of 4! and 6! you will divide out the order of people in an out of the committee and be left with only the number of combinations, specifically (1*2*3*4*5*6*7*8*9*10)/((1*2*3*4)*(1*2*3*4*5*6)) = 210. The combin(x,y) function in Excel will tell you the number of ways you can arrange a group of y out of x.
Now we can determine the number of possible five card hands out of a 52 card deck. The answer is combin(52,5), or 52!/(5!*47!) = 2,598,960. If you're doing this by hand because your calculator doesn't have a factorial button and you don't have a copy of Excel, then realize that all the factors of 47! cancel out those in 52! leaving (52*51*50*49*48)/(1*2*3*4*5). The probability of forming any given hand is the number of ways it can be arranged divided by the total number of combinations of 2,598.960. Below are the number of combinations for each hand. Just divide by 2,598,960 to get the probability.
Poker Math
The next section shows how to derive the number of combinations of each poker hand in five card stud.
Poker Combinations Math Test
Royal Flush
There are four different ways to draw a royal flush (one for each suit).
Straight Flush
The highest card in a straight flush can be 5,6,7,8,9,10,Jack,Queen, or King. Thus there are 9 possible high cards, and 4 possible suits, creating 9 * 4 = 36 different possible straight flushes.
Four of a Kind
There are 13 different possible ranks of the 4 of a kind. The fifth card could be anything of the remaining 48. Thus there are 13 * 48 = 624 different four of a kinds.
Full House
Poker Combinations Math Game
There are 13 different possible ranks for the three of a kind, and 12 left for the two of a kind. There are 4 ways to arrange three cards of one rank (4 different cards to leave out), and combin(4,2) = 6 ways to arrange two cards of one rank. Thus there are 13 * 12 * 4 * 6 = 3,744 ways to create a full house.
Poker Combinations Math Games
Flush
There are 4 suits to choose from and combin(13,5) = 1,287 ways to arrange five cards in the same suit. From 1,287 subtract 10 for the ten high cards that can lead a straight, resulting in a straight flush, leaving 1,277. Then multiply for 4 for the four suits, resulting in 5,108 ways to form a flush.
Straight
The highest card in a straight can be 5,6,7,8,9,10,Jack,Queen,King, or Ace. Thus there are 10 possible high cards. Each card may be of four different suits. The number of ways to arrange five cards of four different suits is 45 = 1024. Next subtract 4 from 1024 for the four ways to form a flush, resulting in a straight flush, leaving 1020. The total number of ways to form a straight is 10*1020=10,200.
Three of a Kind
There are 13 ranks to choose from for the three of a kind and 4 ways to arrange 3 cards among the four to choose from. There are combin(12,2) = 66 ways to arrange the other two ranks to choose from for the other two cards. In each of the two ranks there are four cards to choose from. Thus the number of ways to arrange a three of a kind is 13 * 4 * 66 * 42 = 54,912.
Two Pair
There are (13:2) = 78 ways to arrange the two ranks represented. In both ranks there are (4:2) = 6 ways to arrange two cards. There are 44 cards left for the fifth card. Thus there are 78 * 62 * 44 = 123,552 ways to arrange a two pair.
One Pair
There are 13 ranks to choose from for the pair and combin(4,2) = 6 ways to arrange the two cards in the pair. There are combin(12,3) = 220 ways to arrange the other three ranks of the singletons, and four cards to choose from in each rank. Thus there are 13 * 6 * 220 * 43 = 1,098,240 ways to arrange a pair.
Nothing
First find the number of ways to choose five different ranks out of 13, which is combin(13,5) = 1287. Then subtract 10 for the 10 different high cards that can lead a straight, leaving you with 1277. Each card can be of 1 of 4 suits so there are 45=1024 different ways to arrange the suits in each of the 1277 combinations. However we must subtract 4 from the 1024 for the four ways to form a flush, leaving 1020. So the final number of ways to arrange a high card hand is 1277*1020=1,302,540.
Specific High Card
For example, let's find the probability of drawing a jack-high. There must be four different cards in the hand all less than a jack, of which there are 9 to choose from. The number of ways to arrange 4 ranks out of 9 is combin(9,4) = 126. We must then subtract 1 for the 10-9-8-7 combination which would form a straight, leaving 125. From above we know there are 1020 ways to arrange the suits. Multiplying 125 by 1020 yields 127,500 which the number of ways to form a jack-high hand. For ace-high remember to subtract 2 rather than 1 from the total number of ways to arrange the ranks since A-K-Q-J-10 and 5-4-3-2-A are both valid straights. Here is a good site that also explains how to calculate poker probabilities.Five Card Draw — High Card Hands
Poker Hand Combinations Math
Hand | Combinations | Probability |
---|---|---|
Ace high | 502,860 | 0.19341583 |
King high | 335,580 | 0.12912088 |
Queen high | 213,180 | 0.08202512 |
Jack high | 127,500 | 0.04905808 |
10 high | 70,380 | 0.02708006 |
9 high | 34,680 | 0.01334380 |
8 high | 14,280 | 0.00549451 |
7 high | 4,080 | 0.00156986 |
Total | 1,302,540 | 0.501177394 |
Ace/King High
For the benefit of those interested in Caribbean Stud Poker I will calculate the probability of drawing ace high with a second highest card of a king. The other three cards must all be different and range in rank from queen to two. The number of ways to arrange 3 out of 11 ranks is (11:3) = 165. Subtract one for Q-J-10, which would form a straight, and you are left with 164 combinations. As above there 1020 ways to arrange the suits and avoid a flush. The final number of ways to arrange ace/king is 164*1020=167,280.Internal Links
For lots of other probabilities in poker, please see my section on Probabilities in Poker.
Written by:Michael Shackleford